
Documentation
for

STUFFIT 3.21 / STUFFKEY 4.00
--

Stuffit Copyright (c) Terje Mathison 1990 - 1992
Stuffkey Enhancements Copyright (c) Juergen Geist 1992

--
Although copyrighted, the described programs are a

'labor of love'
and completely free!

Stuffkey.doc Last updated by Juergen Geist 1992 November 16.
Stuffkey 4.00 has the following enhancements over 3.30
- {IfSucc}/{Else}/{Endif} logic using ~{Timeout} on F{Find} and

P{Prompt} commands.
- A {Stop} command.
- Improved error message pointers.

Stuffkey.doc Last updated by Juergen Geist 1992 October 17.
Stuffit 3.21 was written by Terje Mathison.
Stuffkey 3.30, by Juergen Geist, is Terje's code with the following
enhancements:
- Error messages including error location pointer.
- Improved background time handling in Windows, Desqview, etc.
- Timer resolution down to timer ticks, 1/18 sec.
- A time out feature for Prompt and Find commands; the first step to
adding If/Then/Else login.
- A simplified Prompt command, i.e.: p"text".
It is hoped that Terje will incorporate these mods; to avoid confusion
until/if he does, Stuffkey will exist. All Stuffkey changes are documented
here and in the .asm file. The 'zip' file should contain both versions of
the .asm and .com files.

StuffIt.Doc Last-1 update by Roedy Green 1992 June 21

Table of Contents

** To be created soon!
PURPOSE

Stuffit 3.21 is a utility that automates the keyboard. You can
provide a script of keystrokes and Stuffit will automatically
type them into your application programs. What makes Stuffit
different from other similar keyboard macro programs is:

 1. The keyboard remains fully functional the entire time
 for additional manual input or correction.

 2. Stuffit works with intractable programs that throw away
 keystrokes, bypass DOS etc.

 3. Stuffit watches the screen. It does not just type
 blindly.

 4 Stuffkey 4.0 supports if/else/endif logic based on what it finds on the
screen.

 5. Stuffit can handle large scripts, up to 64K.

 6. Stuffit lets you generate more possible keystroke
 chords than other similar products.

 7. Assembler source code is provided, giving you the
 option of adding new features to the program.

COMMAND LINE PARAMETERS IN A NUTSHELL

+0 or + Delay until the application has used up all the
 keystrokes in the type-ahead buffer. This is
 useful for applications that throw away keystrokes
 fed to it too quickly. This is also a handy way
 to flush any pending (uneaten) codes from a
 previous invocation of StuffIt. e.g.: StuffIt +0

empties StuffIt's internal buffer. Note + all
by itself defaults to +0.

+hh:mm:ss time delay. (hours and minutes optional) +4 means
 wait 4 seconds (must be 0..59). +2:4 means wait 2
 minutes and 4 seconds. +5:: means wait 5 hours.
 Represented internally as {Wait}. Often you want
 a +5 or so at the start of your script to give the
 program you are stuffing 5 seconds to load and get
 ready for a keystroke. The timing starts relative
 to when STUFFIT runs, not from when the following
 application requests its first keystroke.

+.tt time delay as above, but in timer ticks, or 1/18 second
resolution. tt can range from 1 to 18. Note this can't be mixed with hh:mm:ss,
etc. Useful when you need just a bit of delay between keystrokes. +.6 will delay
1/3 second. (**-Stuffkey-**)

=hh:mm:ss delay until a specific time of day (24 hour
 format) (hours and minutes optional). =16:00:00
 means wait till 4 PM. =00:00:00 means wait till
 midnight. =0 also means wait till midnight.
 Represented internally as {AtTime}. Be careful!
 =04:00 would mean 4 minutes after midnight!

~hh:mm:ss {TimeOut} next function, i.e., {Prompt}, {Find} in supplied
time. Timer tick format is ok. i.e. ~.15. This allows script to continue on a "not
found" condition. Stuffkey V.4.00 adds the ability to test the results of P
{Prompt} and F {Find} commands. See {IfSucc}, {Else} and {Endif} for details.

(**-Stuffkey-**).

nn stuff a given character code e.g. 27 for Escape,
 13 for Enter Only ASCII decimal numerics are
 accepted. See ASCII code chart in your IBM AT
 tech Reference. You may also use the mnemonics
 e.g. {Esc} for 27. Note that you may use either
 [] or {} but you must use [{], [}], {[} and {]}
 for the braces and brackets themselves.

@nn stuff an extended code preceded by a null. Only
 numerics are accepted. You may use the numeric
 forms or the mnemonics e.g. @68 or {F10}, @73 or
 {PgUp} See table following for the common codes.
 If you cannot find an mnemonic, you will have to
 use the numeric form.

cc:ss specify both the decimal character and its scan
 code e.g. 43:74 to mean the Plus key on the
 numeric keypad, rather than the ordinary plus key.
 See table following for common pairs. You may use
 the numeric forms or the mnemonics e.g. 10:28 or
 {^Cr} for Control-Enter. If you cannot find a
 mnemonic, you will have to use the numeric pair
 form.

'xxxx' Stuff the characters between the quote marks. The
 string itself may not contain 's.

"xxxx" Stuff the characters between the double quote
 marks. The string itself may not contain "s.

F70,20,5,01,"Please enter your phone number"
 The absolute FIND command. Wait patiently for
 text to appear at col, row, length, attribute.
 The attribute is optional. StuffIt searches
 starting at column 70, row 20 for the string
 "Please enter your phone number". It waits until
 the string appears. The 5 means allow some slop.
 The string may START anywhere in a window within 5
 characters to the right of the specified starting
 point. It does not mean the whole string must FIT
 in a window five characters wide. The slop may
 wrap around from one line to the next. See the
 notes below on Stuffit's co-ordinate system, where
 1,1 is the upper left corner. The 01 is a rarely
 used feature. It means, the match only counts if
 the string is displayed with decimal video
 attribute "01". If you leave out the 01, leave
 out its comma as well. Represented internally as
 {Find}.

(**-Stuffkey-**) Provides the ~ or {TimeOut} feature to enable
escaping from an "unfound" condition.

P10,1,5,01,"Please enter your phone number"

 The relative PROMPT command. Wait patiently for
 text to appear at relative col, row, length,
 attribute. The attribute is optional. Stuffit
 searches for the string "Please enter your phone
 number" starting left ten columns, and up one row
 from where the cursor is. It waits until the
 string appears. The 5 means allow some slop. The
 string may START anywhere in a window within 5
 characters to the right of the specified starting
 point. It does not mean the whole string must FIT
 in a window five characters wide. The slop may
 wrap around from one line to the next. The 01 is
 a rarely used feature. It means, the match only
 counts if the string is displayed with decimal
 video attribute "01". If you leave out the 01,
 leave out its comma as well. Represented
 internally as {Prompt}.
P"Password: "

(**--Stuffkey--**)
The 'easy to use' version of the PROMPT command. This works
the same as above, but defaults to looking for text at 3 spaces
plus the length of the supplied text to the left of the cursor on
the current line. The default 'slop' window is 4, with no
attributes. In the example above, the text "Password: " is 10
characters long, so this is equivalent to P13,0,4,"Password: "
in the detailed Prompt command. If the cursor is on line 12,
position 30, Stuffkey would search for the text on line 12
starting at positions 27 thru 30. These defaults usually work,
and certainly make the Prompt command easier to use!
Stuffkey provides the ~ or {TimeOut} feature to enable
escaping from an "unfound" condition for both versions of
{Prompt}.

! Reboot. (=0 ! will reboot at midnight.) Also
 known as {^aDel} or {Boot}. The code used to
 reboot is bare bones. It does not flush caches,
 watch out for DESQview or Windows etc. If you
 need a safer reboot, use the separate REBOOT.Com
 utility posted on BIX in IBM.UTILS/LISTINGS.

(**--Stuffkey--**) changes this from a warm to cold boot; reset
vs. Ctl-Alt-Del.

{IfTrue}
{IfT}
{IfSucc} (**--Stuffkey--** 4.00)

If the ~ {TimeOut} function is used before a F {Find} or P

{Prompt} command, said command can be tested for success
or failure. If the string indicated is found, {IfSucc} will be true,
and commands immediately following it will be executed. If
the string is not found, execution will resume after the next
{Else} or {Endif}, whichever is found first. No attempt is
made to match up If's with else's and endif's, they are
processed as they are found. Unexpected {Else} and {Endif}
commands are simply ignored. Thus, one {Else} or {Endif}
command will respond to two or more prior {IfSucc}
commands.

{IfFalse}
{IfF}
{IfFail} (**--Stuffkey--** 4.00)

The inverse of {IfSucc} above. Equivalent to If NOT Success.
All rules for {IfSucc} apply.

{Else} (**--Stuffkey--** 4.00)
Stuffkey will resume execution at this point on a failed
{IfSucc}, {IfTrue}, {IfT}, {IfFail}, {IfFalse} or {IfF} command.
If the {Else} command is run into unexpectedly, it will simply
be ignored.

{Endif} (**--Stuffkey--** 4.00)
Stuffkey searches for a and will resume execution here after
any If statement, unless it finds an Else statement first.
Unexpected {Endif}'s are simply ignored.

{Stop} (**--Stuffkey--** 4.00)

This command allows you to halt a script. Useful for 'one way'
If commands. i.e., If 'something' Do 'something' else stop the
program.

/F:MyFile.Txt FILE. Read commands from MyFile.Txt instead of
 from the command line. This command may be only
 be used on the command line, not nested in a file.

/B:512 BUFFER. Allocate room for 512 bytes for the
 script. You must allocate enough to store the
 ENTIRE script once it has been converted to a
 compact internal form. On initial loading,
 StuffIt will use a minimum of 512 bytes, or
 automatically expand to whatever is necessary to
 needed to store the compact tokenized form of the
 input file. If you want to save a few bytes you
 can prune it back using the /B: command. Future
 versions may do this automatically.

/E EXPANDED. Makes Stuffit compatible with keyboard
 look-ahead buffer expanders. Unfortunately this
 option is incompatible with very old BIOSes that
 do not support the BIOS table header entries at
 40:80 and 40:82.

/L LIST. Displays a list of all the mnemonic codes
 for keystrokes supported -- in other words a

 miniature version of this manual. Since that list
 is generated directly from the parsing tables
 inside the program, when there are discrepancies,
 use that list in preference to this manual.

/R REMOVE. Will remove (Unload) Stuffit from RAM.
 StuffIt is a TSR and so stays resident in RAM.
 The overhead is minuscule, a mere 1232 bytes, half
 of which is the buffer. You cannot combine /R
 with a script on the same line. STUFFIT /R will
 automatically terminate any script running.

/Sxx SIGNATURE. If want to have multiple copies of
 Stuffit running at once, you need to give each one
 its own two-letter signature. /SST is the
 default. Why would you want more than one copy
 running? Stuffit can only look for one string on
 the screen at a time. If you needed to look for
 two AT ONCE, you would need two copies of Stuffit
 running.

CO-ORDINATE SYSTEM

The co-ordinate system Stuffit uses for the FIND command is very
familiar to programmers who poke bytes into the REGEN buffer of
display adapters, but it may seem a little strange to someone who
has a mathematical background. Mathematicians have two systems:

 1. X,Y co-ordinates where the origin 0,0 is in the lower
 left corner.

 2. Matrices indexed by row and column. Usually rows and
 columns are numbered starting with 1. Rows are
 numbered starting at the top. Traditionally co-
 ordinates are given in the order row, then column.

Stuffit uses a hybrid of these two schemes. It uses row and
column, and starts numbering at 1,1 in the upper left corner.
Stuffit uses column, row order rather than the usual row, column.
The co-ordinate system for the PROMPT command is strange until
you consider that the text you want to look for will usually be
to the left and above the cursor. For relative positioning in
the PROMPT command, left and up are considered positive with the
current cursor position considered as 0,0. This is the exact
opposite convention to what the FIND command uses. Beware!
(Stuffkey's EASY prompt command might help.)

EXAMPLES:

Format floppies alternately in A: and B:, without answering any
prompts:

REM EXAMPLE 1 FLOPPY FORMATTER (Batch file calling Stuffit)
echo off
:loop
Stuffit ' ' +0 13 P25,0,5,"Format another" +1 'N' 13
format A:
Stuffit ' ' +0 13 P25,0,5,"Format another" +1 'N' 13
format B:
goto loop

REM EXAMPLE 2 AUTOEXEC.BAT
Rem Start backup program in batch mode:
Rem Use Stuffit, to reboot GW program at midnight
Stuffit =00:00:00 !
Rem Start GW program
LAN-GW

REM Example 3, running Stacker's Defragger unattended
C:\SYS\Stuffit.Com +5 {C} F21,12,1,"Optimization complete" +2
{F10} {Y}
C:\Stacker\SDEFRAG.Exe F: /SE

REM Example 4, logging into a NOVELL LAN with Stuffkey 4.0.
rem Assuming use of Novell's IPX and NETX, network drive is F:,
rem login name is poltergeist, and password is pword.
rem Load stuffkey to provide password if the Password:
rem prompt is found within 30 seconds of loading ipx, else reboot.
rem This loading of stuffkey before running ipx, netx, etc.,
rem allows recovering/rebooting from a 'hung machine' condition
rem if any of ipx, netx, or log commands fail; this is a real live
rem example, used daily - it works!

stuffkey + ~30 P"password: "{IfT}+ 'pword' 13 {Else} + +1 ! {Endif}
ipx
netx
f:
log poltergeist

NOTE: Extra examples are included in the archive as xxxxx.bat and/or xxxxx.key
files. To use the .bat files, just run them. To use the .key files, type "stuffkey
/f:xxxxx.key", without the quotes, where xxxxxx is the name of the file. One
such is stufftim.key, which tests the time commands across midnight. Also
included is stufferr.bat, which runs stuffkey with deliberate errors to produce the
following error examples.

ERROR EXAMPLES

 The error handler in Stuffkey 4.0 first displays the text of the errored line.
 Second, it attempts to point to the beginning of the command in error, followed
by dashes to a second pointer under the actual offending character or number.
These pointers, while not perfect, are pretty close; certainly better than not
having them!
 Third, it displays the errored line number.
 Fourth, it gives a textual description of the error.

Stuffkey error examples, generated by Stufferr.bat, follow.

EXAMPLE 1: THE COMMA FOLLOWING THE PROMPT PROBABLY SHOULDN'T BE
THERE. THIS MAKES THE FIRST ARG, DX (COLUMN) 0, AND SHIFTS THE
REMAINING ARGS LEFT. THUS, THE 0 CHANGES FROM A LEGAL DY (ROW) ARG
TO AN ILLEGAL SLOP ARGUMENT. NOTE THE ARROW POINTS TO THE ARG
AFTER THE ERROR; A QUIRK TO BE AWARE OF.

+0 +1 {Prompt},12,0,4,"Password: " 'Poltergeist' 13
 ^----^
** Error lin# 1 Invalid Prompt find cmd. Bad number - out of range.

EXAMPLE 2: THE 128 DX (COLUMN) ARG. IS ILLEGAL. VALUES ARE +/- 127.

+0 +1 {Prompt}128,0,4,"Password: " 'Poltergeist' 13
 ^--^
** Error lin# 1 Invalid Prompt find cmd. Bad number - out of range.

EXAMPLE 3: A SPACE IS A LEGAL TOKEN, LEADING SPACES ARE NOT.

+0 { } {F12} { F12}
 ^---^
** Error lin# 1 Invalid Token.

EXAMPLE 4: THE TRAILING SPACE CAUSES THIS TOKEN TO BE UNRECOGNIZED.
NOTE THE DIFFERENCES IN THE ERROR LOCATION POINTER BETWEEN INVALID
TOKENS AND UNRECOGNIZED TOKENS/COMMANDS.

+0 { } {F12} {F12 }
 ^
** Error lin# 1 Invalid or unknown command.

EXAMPLE 5: TIME FORMAT CAN BE HH:MM:SS OR .TT, BUT NOT BOTH

+ +.1 +1 +1.1 F0,1,1920,"Cshow version" + +1 13"*.gif"13
 ^-^
** Error lin# 1 Invalid Time. Bad number.

EXAMPLE 6: THE FIND COMMAND COORDINATES START AT 1,1 NOT 0,0.

+ +.1 +1 F0,1,1920,"Cshow version" + +1 13"*.gif"13
 ^
** Error lin# 1 Invalid Find string cmd. Bad number - out of range.

EXAMPLE 7: THE QUOTES AFTER THE 13 MAKE IT LOOK LIKE A BAD NUMBER. IT
IS A GOOD IDEA TO LEAVE A SPACE BETWEEN ITEMS.

+ +.1 +1 F1,1,1920,"Cshow version" + +1 13"*.gif"13
 ^-^
** Error lin# 1 Invalid or unknown command. Bad number.

EXAMPLE 8: NOTE THE LOCATION OF THE ERROR POINTERS.

+ {TimeOut}.1 {TokenTooLong}
 ^------^
** Error lin# 1 Invalid Token.

TROUBLE SHOOTING

PROBLEM: Stuffit fails to send all the keystrokes. Only some
keystrokes get through.

SOLUTION: Your program is clearing the type-ahead buffer from
time to time. You can outfox it by using, say, +2 or +.6 commands
to insert a short delay AFTER the program has cleared the type-ahead buffer
before Stuffit starts poking characters into it again.

This can be combined with the F and P commands to hold off
generating the keystrokes until an omen appears on the screen that
the program is ready for input and is not about to throw away the
keystrokes you feed it. Sometimes you must combine the
techniques, an F or P command followed by a short delay.

PROBLEM: I finally got Stuffit to work by putting in a huge
great time delay at the start to handle the worst case, but most
of the time such a long time delay is not needed, and just wastes
time.

SOLUTION: Stuffit starts sending keystrokes right away. It does
not wait until the succeeding program is loaded. You can stuff a
dummy character followed by a +0 time delay, e.g. Stuffit 'z' +0.
Stuffit will stuff the z, then process the +0 which causes it to
wait for the keystroke buffer to empty. The application program
then starts up. The application goes about its initialization
then finally it throws the 'z' away by clearing the keystroke
buffer. Stuffit notices the buffer is now empty and continues
with the script. The net effect is Stuffit waited for the
precise moment the program was ready before stuffing the
keystrokes for the app.

Another solution is to use the FIND feature to look for the
initial prompt.

PROBLEM: I tried the find command but it just won't work.

SOLUTION: First read up again on Stuffit's two co-ordinate
systems. You may not be numbering your rows and columns the way
Stuffit does. Next, note the slop only works to the right. If
your guess at the co-ordinate were off by one to the left, you
would never get a hit, no matter how much slop you allowed. Note
that slop only works on columns, not rows. You generally must

get the row bang on. If you had 160 COLUMNS of slop however,
this would be treated as two ROWS of slop.

PROBLEM: Stuffit just echoes its command syntax summary no
matter what I do.

SOLUTION: Stuffit is laconic in its error messages, but it is
still better than it used to be. It does not tell you what you
did wrong. You have to guess. In a worst case, the way you do
this is to take out all your commands. Then add them one by one.
The one you last added at the time of failure is the one with the
syntax error.

Note that Stuffit completely analyzes the script before starting
to send any keystrokes to your application. If there is even one
tiny error in it, it will not do anything.

ALTERNATE SOLUTION: Use (**--Stuffkey--**). It has reasonably robust error
handling. It will still abort on the first error it finds, but it will describe the nature
of the error, display the offending line, and point to the error. See the ERROR
EXAMPLES section for more detail.

PROBLEM: My program insists I use keypad - minus. Where do I
find the magic colon pair for such keystrokes?

SOLUTION: There is a list of the most commonly used pairs at the
end of this document. See the IBM AT Technical reference manual
for more information on system scan codes.

PROBLEM: You referred me to the IBM AT Technical Reference
Manual for scan codes and ASCII codes. I don't have this
expensive book. What can I do?

SOLUTION: Call Falk Data Systems at (915) 684-7670, 5322 Rockwood
Court, El Paso Texas, 79932. They make an inexpensive wall chart
that shows the ASCII codes.

PROBLEM: I want to generate Shift-PrtSc. There does not appear
to be a scan code for this combination.

SOLUTION: Use the {PrintScreen} mnemonic. It will simulate the
special handling of PrtSc or Shift-PrtSc.

PROBLEM: the F command does not work to fetch a script out of a
file.

SOLUTION: The command is /F:, not F, for fetching from a file.
This is confusing. The F command is for FINDING a magic string

on the screen. Perhaps you forgot the colon or inserted spaces.

PROBLEM: My program does not seem to recognize keystrokes.

SOLUTION: It is unlikely, but one possible cause is this: when
you DON'T use the colon form to give Stuffit both the ASCII and
scan code, then Stuffit fakes it by using 2 as the scan code.
Most programs do not check the scan code, but a few might be
confused. Stuffit automatically generates the proper scan code
for most keys. If your application needs a specific scan
code/char combination, you night need the explicit CC:SS form.

PROBLEM: The scan codes I need are not in the list below. Also
I suspect some of the entries are incorrect, or might not be
correct for my Ichiban Samurai (Steve Job's mythical Japanese
computer company) computer.

SOLUTION: Terje Mathisen has written a companion utility called
KEYCODE2.ZIP available on BIX in the IBM.UTILS/LISTINGS section
that will display the scan codes and ASCII codes of any
keystrokes as you depress them.

PROBLEM: Stuffit hiccoughs every time I use any command with a ^
in it such as {^Z} and says there is a syntax error. I have
looked at the line until I am blue in the face. It is perfect!

SOLUTION: I bet you are using 4DOS. 4DOS reserves the ^
character to allow you to glue two commands together on one line.
There are four ways out:
1.) stop using 4DOS.
2.) use COMMAND.COM temporarily by typing COMMAND.
3.) use the sequence Ctrl-X ^ in place of ^ to warn 4DOS this is
a literal ^, not a line glue character.
4.) look for an alias -- a different way of specifying the same
character, e.g. {Sub} for {^Z}, or 0:116 for {^Right}

PROBLEM: I feel like a mushroom, kept in the dark. I want to
understand better what is going on. I just don't get this scan
code stuff.

SOLUTION: Roedy Green has written a companion essay called "How
an AT Keyboard Works" that will explain how BIOS processes
keystrokes.

PROBLEM: Stuffit seems too complicated for what I need. My
applications don't even throw away keystrokes. I want something
simpler -- not a TSR.

SOLUTION: Try Roedy Green's SAY! posted on BIX in
IBM.UTILS/LISTINGS. It is a simple utility that generates
keystrokes you can feed to your applications using pipes -- e.g.
SAY "Y" 13 | DEL *.*

PROBLEM: I am going stark raving bonkers trying to figure out
the absolute screen co-ordinates that various applications are
using to paint the strings I need to get Stuffit to look for.
Often the string I want is hanging out in the middle of nowhere.
How are you supposed to count columns without a reference grid?

SOLUTION: Use PRNDSK available on BIX in IBM.UTILS/LISTINGS to
capture the screen contents to a file as you run the application
manually. Then use a text editor to examine the screens and
count the rows and columns.

PROBLEM: The application program I am using sometimes gives me
an error message, and sometimes it does not. If I wait for the
error message, Stuffit will wait for ever. If I blithely assume
there will be no error, my script will get stuck in the weeds
when there is an error.

SOLUTION: Run TWO copies of Stuffit. Let one wait for the error
message using the FIND command, and generate the keystrokes to
handle it, and the other copy handle only the normal case.
Stuffit normally assumes that when you run it, you just want to
tack on more to the script of the copy already running. If you
want to start up a second script to run in parallel you must do
something like this:

Stuffit.Com /F:C:\Doc\MyScript.txt /SAA

Stuffit.Com /F:C:\Doc\Script2.txt /SBB

ALTERNATE SOLUTION. Use (**--Stuffkey--** 4.0).
It fixes exactly this problem. You can now test if the find command was
successful. See ~ {Timeout}, {IfSucc}, {Else}, and {Endif} earlier in the
documentation. Also have a look at the usage example for logging into a Novell
network; it uses If/Else logic with the prompt command.

WINDOWS, DESQVIEW, MULTI-TASKING PROBLEMS

PROBLEM: I run Stuffit in a Windows 3.1 Dos box, or in Desqview, and all the
time functions take longer than they should.

SOLUTION: Switch from Stuffit to Stuffkey; it fixes this, though not all,
multitasking quirks. Both versions rely on the timer tick interrupt to operate.
Stuffit assumed it would be interrupted on each tick, which doesn't happen in
multi-tasking environments. Stuffkey double checks how many timer ticks have
actually gone by, so it can 'catch up' if it has missed some. Note though, that
Stuffkey will not do anything if it receives no timer tick interrupts. Make sure the
'run in background' option is on for any background windows containing
Stuffkey.

PROBLEM: I run Stuffkey in a Windows 3.1 Dos window, and it never does
anything!

SOLUTION: Most likely, the window you started Stuffkey in is not the active one.
Stuffkey, like any other program, needs processor time. Check to make sure the
Dos Window you started stuffkey in is set to run in the background. This is
normally defined in a .pif file; use the Windows Pif editor to verify background
processing is enabled.

PROBLEM: I run Stuffkey in a Desqview Window, switch it to run in the
background, but it stuffs its keystrokes into my foreground window.

SOLUTION: As of 16 Nov. 92, there is no solution. Desqview, by default (unlike
Windows), shares the keyboard buffer among its tasks. It may be possible to
change this with DV's myriad keyboard settings....this is being checked.

HOW IT WORKS UNDER THE HOOD

Most typists can type faster than programs can process
keystrokes. Thus the BIOS stores keystrokes in a type-ahead
buffer. Stuffit works by sneakily poking keystrokes to the type-
ahead buffer when BIOS is not looking. Stuffit thus has no need
of taking over INT 16 to control the handing over of keystrokes
to the application. The advantage of this method is, Stuffit
works with programs that sneak past INT 16 to use the Enhanced
101-key keyboard features.

There are 254 different extended ASCII codes that can be stored
in a byte. However there are control sequences such as F1, Home,
Ctrl-F1 which don't have a 1-byte code. These require a two byte
code, the first byte being a 0-byte lead in. Stuffit can easily
handle poking that pair into the keystroke buffer, using the @nn
feature.

There are some keys duplicated on the keyboard. For example
there is a + key sharing the = key. There also a + key on the
numeric keypad. Most programs do not care which + key you
pressed. Some do. These programs find out by using interrupt HEX
16 function 00. The processed character is returned in AL and
the semi-cooked scan code from the keyboard is returned in AH.
If you the program is picky, you can get Stuffit to generate the
precise character and scan code using the cc:ss command.

Because of history, with each new keyboard design attempting to
maintain partial compatibility with earlier designs, the process
of generating a keystroke has become more and more complex. Each
keypress down generates a code, as does each key release.

The keyboard itself translates the codes from row-column on the
keyboard to a raw scan code format. Then the keyboard controller
in the PC (a miniature computer in its own right) translates them
again. Then the BIOS translates them yet again, and matches up
the ups and downs, notices chords (multiple keys pressed at once
such as Ctrl Alt and Shift) and generates the keystrokes and puts
them in the keystroke type-ahead buffer. Further DOS, with its
KEYB utility, may interfere with BIOS to support foreign
keyboards. So you can see the term "scan" code has many meanings
-- depending just where in this assembly line you look at the
codes.

CREDITS

 - Terje W. Mathisen wrote Stuffit and the first documentation.
 - Roedy Green polished the documentation.
 - Juergen Geist added his 2 bits worth to Stuffit and called it Stuffkey (3.3).
It remains to be seen whether Terje absorbs these mods into Stuffit. Juergen will
definitely be adding the {IfSuccess} {Else} {Endif} logic to Stuffkey if Terje
doesn't wish to add this to Stuffit.
 - 16 Nov 92, Stuffkey 4.0, Juergen has added If/Else logic.

PAYMENT AND LICENSING

 The program Stuffit is absolutely FREE. I (Terje) don't want money; I have
money. What I want is recognition from my peers. You may use it for whatever
you like, but it is not warranted for any purpose.
Copyright 1991, 1992 by Terje W. Mathisen.

Terje W. Mathisen
Spanish Fork, Utah, June 1992.

 The added/modified code contained in Stuffkey is also free. I (Juergen in this
paragraph) applaud Terje's efforts and will extend his philosophy - even though I
could use some money!
 I probably would not have expended this effort had Terje not provided his
program, including source code, with no strings attached. I believe Terje's work,
like mine, was/is a labor of love. Bravo Terje!
 Stuffkey is copyrighted the same as Stuffit; I also like recognition and would like
my name mentioned. Terje?

Juergen Geist, bixname 'poltergeist'
Vancouver, B.C. November 1992

FUTURES VAPOR WARE (Some are done, actually!)

Possible futures for Stuffit include:

 1. Allowing comments in the script files. This is done in Stuffit 3.21. The ;
(semicolon) marks the rest of a line as a comment, provided it is not inside a
string or token. This item to be dropped from documentation in next release.

 2. Allowing very large e.g. greater than a megabyte sized
 scripts that are stored on disk or in expanded RAM.

 3. Friendlier error messages. This is done in Stuffkey 3.3. Some examples are
given in the troubleshooting section of this document. Error messages are
improved again in Stuffkey 4.0. This item to be dropped from 'ideas'
documentation in next release.

 4. Automatic /B: command.

--------------- Following ideas from J.Geist (Stuffkey)

 5. {IfSuccess} {Else} {Endif} logic.
Done in Stuffkey 4.0. This item to be dropped from 'ideas' documentation
in next release.

 6. * {Repeat} command, i.e., *5 {Right} or maybe {Right 5}.

 7. Definitions. i.e.:
Define {SloYes} +0 +.6 {y} +0 {Cr} +0 +.6 ; Slow y, Enter

 8. Macros, Subroutines, Looping, or Gotos ???

 9. A way to pause and/or abort a script from the keyboard. Eyeing the Scroll
Lock key for this function.

10. A status function. i.e., Stuffkey /S[nn]? to get status of loaded copies -
idle, waiting for Prompt, etc.

11. DesqView script compatibility. Desqview/Windows awareness.

12. Variables, integers at first, for looping, counting, etc.

13. String variables, including ability to "get" them from screen, keyboard, or
Dos environment, and later "put" them somewhere.

SCAN CODES

Here are the Stuffit codes for some keystrokes you might want to
generate. They are case insensitive. You may key them in any
mixture of upper and lower case, except of course the codes for
the letters themselves {A} and {a}. See your IBM AT Tech manual
for more:

PLAIN KEYS

{Bs} 8:14 backspace
{Cr} 13:28 Enter (Carriage Return)
{Del} 0:83 Del
{Down} 0:80 Down
{Esc} 27:1 Esc key
{End} 0:79 End
{Home} 0:71 Home
{Ins} 0:82 Ins
{Left} 0:75 Left
{PgDn} 0:81 PgDn
{PgUp} 0:73 PgUp
{PrtScrn} 255:5 PrtScrn
{Right} 0:77 Right
{Tab} 9:15 Tab
{Up} 0:72 Up

[{] 123:26 left curly brace.
[}] 125:27 right curly brace.
{ } 32:57 space
{!} 33:2 exclamation
{"} 34:40 quote
{#} 35:4 sharp
{$} 36:5 dollar
{%} 37:6 percent
{&} 38:8 ampersand
{'} 39:40 tick, apostrophe
{(} 40:10 left parentheses
{)} 41:11 right parenthesis
{*} 42:9 star
{+} 43:13 plus
{,} 44:51 comma
{-} 45:12 minus
{.} 46:52 period
{/} 47:53 forward slash
{:} 58:39 colon

{;} 59:39 semi-colon
{<} 60:51 less than
{=} 61:13 equals
{>} 62:52 greater than
{?} 63:53 question mark
{@} 64:3 at sign
{[} 91:26 left square bracket
{\} 92:43 backslash
{]} 93:27 right square bracket
{^} 94:7 circumflex
{_} 95:12 underscore
{`} 96:41 grave
{|} 124:43 vertical bar
{~} 126:7 tilde
 174 << French open quote
 175 >> French close quote

{0} 48:11 zero
{1} 49:2 one
{2} 50:3 two
{3} 51:4 three
{4} 52:5 four
{5} 53:6 five
{6} 54:7 six
{7} 55:8 seven
{8} 56:9 eight
{9} 57:10 nine

{¥} 157:39 Yen
 Norway O slash
{å} 134:26 a ring
{æ} 145:40 lower case ae
{¢} 155:39 cent sign
 Norway o slash
{a} 97:30 lower case a
{b} 98:48 lower case b
{c} 99:46 lower case c
{d} 100:32 lower case d
{e} 101:18 lower case e
 130 lower case e acute
{f} 102:33 lower case f
{g} 103:34 lower case g
{h} 104:35 lower case h
{i} 105:23 lower case i
{j} 106:36 lower case j
{k} 107:37 lower case k

{l} 108:38 lower case l
{m} 109:50 lower case m
{n} 110:49 lower case n
{o} 111:24 lower case o
{p} 112:25 lower case p
{q} 113:16 lower case q
{r} 114:19 lower case r
{s} 115:31 lower case s
{t} 116:20 lower case t
{u} 117:22 lower case u
{v} 118:47 lower case v
{w} 119:17 lower case w
{x} 120:45 lower case x
{y} 121:21 lower case y
{z} 122:44 lower case z

{F1} 0:59 F1
{F2} 0:60 F2
{F3} 0:61 F3
{F4} 0:62 F4
{F5} 0:63 F5
{F6} 0:64 F6
{F7} 0:65 F7
{F8} 0:66 F8
{F9} 0:67 F9
{F10} 0:68 F10
{F11} 0:133 F11
{F12} 0:134 F12

NUMERIC PAD CHARACTERS

{Enter} 13:224 numpad Enter
{n*} 42:55 numpad *
{n+} 43:78 numpad +
{n-} 45:74 numpad -
{n.} 46:83 numpad .
{n/} 47:224 numpad /
{n0} 48:82 numpad 0
{n1} 49:79 numpad 1
{n2} 50:80 numpad 2
{n3} 51:81 numpad 3
{n4} 52:75 numpad 4
{n5} 53:76 numpad 5
{n6} 54:77 numpad 6
{n7} 55:74 numpad 7
{n8} 56:72 numpad 8

{n9} 57:73 numpad 9

{^Enter} 10:224 numpad Ctrl-Enter
{^n5} 0:143 numpad Ctrl-5
{^n*} 0:150 numpad Ctrl-*
{^n+} 0:144 numpad Ctrl-+
{^n-} 0:142 numpad Ctrl--
{^n/} 0:149 numpad Ctrl-/

{aEnter} 10:224 numpad Alt-Enter
{an+} 0:78 numpad Alt-+
{an-} 0:74 numpad Alt--
{an/} 0:164 numpad Alt-/

EXTENDED ARROWPAD CHARACTERS

{eDel} 224:83 extpad Del
{eDown} 224:80 extpad Down
{eEnd} 224:79 extpad End
{eHome} 224:71 extpad Home

{eIns} 224:82 extpad Ins
{eLeft} 224:75 extpad Left
{ePgDn} 224:81 extpad PgDn
{ePgUp} 224:73 extpad PgUp
{eRight} 224:77 extpad Right
{eUp} 224:72 extpad Up

{aeDel} 0:163 extpad Alt-Del
{aeDown} 0:160 extpad Alt-Down
{aeEnd} 0:159 extpad Alt-End
{aeHome} 0:151 extpad Alt-Home
{aeIns} 0:162 extpad Alt-Ins
{aeLeft} 0:155 extpad Alt-Left
{aePgDn} 0:161 extpad Alt-PgDn
{aePgUp} 0:153 extpad Alt-PgUp
{aeRight} 0:157 extpad Alt-Right
{aeUp} 0:152 extpad Alt-Up
{an*} 0:55 extpad Alt-*
{^eDel} 224:147 extpad Ctrl-Del
{^eDown} 224:145 extpad Ctrl-Down
{^eEnd} 224:117 extpad Ctrl-End
{^eHome} 224:119 extpad Ctrl-Home
{^eIns} 224:146 extpad Ctrl-Ins
{^eLeft} 224:115 extpad Ctrl-Left
{^ePgDn} 224:118 extpad Ctrl-PgDn

{^ePgUp} 224:132 extpad Ctrl-PgUp
{^eRight} 224:116 extpad Ctrl-Right
{^eUp} 224:141 extpad Ctrl-Up

SHIFT + KEY

{sTab} 0:15 Shift-Tab
 Shift-PrtSc (not avail)
{Å} 143:26 Upper case A ring
{Æ} 146:40 capital AE
{A} 65:30 capital A
{B} 66:48 capital B
{C} 67:46 capital C
{D} 68:32 capital D
{E} 69:18 capital E
{F} 70:33 capital F
{G} 71:34 capital G
{H} 72:35 capital H
{I} 73:23 capital I
{J} 74:36 capital J
{K} 75:37 capital K
{L} 76:38 capital L
{M} 77:50 capital M
{N} 78:49 capital N
{O} 79:24 capital O
{P} 80:25 capital P
{Q} 81:16 capital Q
{R} 82:19 capital R
{S} 83:31 capital S
{T} 84:20 capital T
{U} 85:22 capital U
{V} 86:47 capital V
{W} 87:17 capital W
{X} 88:45 capital X
{Y} 89:21 capital Y
{Z} 90:44 capital Z

{sF1} 0:84 Shift-F1
{sF2} 0:85 Shift-F2
{sF3} 0:86 Shift-F3
{sF4} 0:87 Shift-F4
{sF5} 0:88 Shift-F5
{sF6} 0:89 Shift-F6
{sF7} 0:90 Shift-F7
{sF8} 0:91 Shift-F8
{sF9} 0:92 Shift-F9

{sF10} 0:93 Shift-F10
{sF11} 0:135 Shift-F11
{sF12} 0:136 Shift-F12

ALT + KEY

{aBS} 0:14 Alt-Backspace
{aCR} 0:28 Alt-Enter
{aEsc} 0:1 Alt-Esc

{a'} 0:40 Alt-'
{a*} 0:55 Alt-*
{a,} 0:51 Alt-,
{a-} 0:130 Alt--
{a.} 0:52 Alt-.
{a/} 0:53 Alt-/
{a;} 0:39 Alt-;
{a=} 0:131 Alt-=
{a[} 0:26 Alt-[
{a\} 0:43 Alt-\
{a]} 0:27 Alt-]
{a`} 0:41 Alt-`

{a0} 0:129 Alt-0
{a1} 0:120 Alt-1
{a2} 0:121 Alt-2
{a3} 0:122 Alt-3
{a4} 0:123 Alt-4
{a5} 0:124 Alt-5
{a6} 0:125 Alt-6
{a7} 0:126 Alt-7
{a8} 0:127 Alt-8
{a9} 0:128 Alt-9

{aA} 0:30 Alt-A
{aB} 0:48 Alt-B
{aC} 0:46 Alt-C
{aD} 0:32 Alt-D
{aE} 0:18 Alt-E
{aF} 0:33 Alt-F
{aG} 0:34 Alt-G
{aH} 0:35 Alt-H
{aI} 0:23 Alt-I
{aJ} 0:36 Alt-J
{aK} 0:37 Alt-K
{aL} 0:38 Alt-L

{aM} 0:50 Alt-M
{aN} 0:49 Alt-N
{aO} 0:24 Alt-O
{aP} 0:25 Alt-P
{aQ} 0:16 Alt-Q
{aR} 0:19 Alt-R
{aS} 0:31 Alt-S
{aT} 0:20 Alt-T
{aU} 0:22 Alt-U
{aV} 0:47 Alt-V
{aW} 0:17 Alt-W
{aX} 0:45 Alt-X
{aY} 0:21 Alt-Y
{aZ} 0:44 Alt-Z

{aF1} 0:104 Alt-F1
{aF2} 0:105 Alt-F2
{aF3} 0:106 Alt-F3
{aF4} 0:107 Alt-F4
{aF5} 0:108 Alt-F5
{aF6} 0:109 Alt-F6
{aF7} 0:110 Alt-F7
{aF8} 0:111 Alt-F8
{aF9} 0:112 Alt-F9
{aF10} 0:113 Alt-F10
{aF11} 0:139 Alt-F11
{aF12} 0:140 Alt-F12

CONTROL + KEY

{Nul} 0:3 Ctrl-@ 0
{Soh} 1:30 Ctrl-A 1
{Stx} 2:48 Ctrl-B 18
{Etx} 3:46 Ctrl-C 2
{Eot} 4:32 Ctrl-D 19
{Enq} 5:18 Ctrl-E 3
{Ack} 6:33 Ctrl-F 20
{Bel} 7:34 Ctrl-G 4
{Bs} 8:35 Ctrl-H 5
{Ht} 9:23 Ctrl-I 6
{Lf} 10:36 Ctrl-J 7
{Vt} 11:37 Ctrl-K 8
{Ff} 12:38 Ctrl-L 9
{Cr} 13:50 Ctrl-M 10
{So} 14:49 Ctrl-N 11

{Si} 15:24 Ctrl-O 12
{Dle} 16:25 Ctrl-P 13
{Xon} 17:16 Ctrl-Q 14
{Dc2} 18:19 Ctrl-R 15
{Dc3} 19:31 Ctrl-S 16
{Dc4} 20:20 Ctrl-T 17
{Nak} 21:22 Ctrl-U 21
{Syn} 22:47 Ctrl-V 22
{Etb} 23:17 Ctrl-W 23
{Can} 24:45 Ctrl-X 24
{Em} 25:21 Ctrl-Y 25
{Eof} 26:44 Ctrl-Z 26
{Esc} 27:1 ctrl-[27
{Fs} 28:43 Ctrl-\ 28
{Gs} 29:27 Ctrl-] 29
{Rs} 30:7 Ctrl-^ 30
{Us} 31:12 Ctrl-_ 31

{^Bs} 127:14 Ctrl-Backspace
{^@} 0:3 Ctrl-@ null
{^Break} 255:6 Ctrl-Break
{^Cr} 10:28 Ctrl-Enter
{^Del} 0:147 Ctrl-Del
{^Down} 0:145 Ctrl-Down
{^End} 0:117 Ctrl-End
{^Home} 0:119 Ctrl-Home
{^Ins} 0:146 Ctrl-Ins
{^Left} 0:115 Ctrl-Left
{^PgDn} 0:118 Ctrl-PgDn
{^PgUp} 0:132 Ctrl-PgUp
{^PrtScrn} 0:114 Ctrl-PrtScrn
{^Right} 0:116 Ctrl-Right
{^Tab} 0:148 Ctrl-Tab
{^Up} 0:141 Ctrl-Up

{^[} 27:26 Ctrl-[Esc
{^\} 28:43 Ctrl-\ fs
{^]} 29:27 Ctrl-] gs
{^^} 30:7 Ctrl-^ rs
{^_} 31:12 Ctrl-_ us
{^A} 1:30 Ctrl-A soh
{^B} 2:48 Ctrl-B stx
{^C} 3:46 Ctrl-C etx
{^D} 4:32 Ctrl-D eot
{^E} 5:18 Ctrl-E enq
{^F} 6:33 Ctrl-F ack

{^G} 7:34 Ctrl-G bel
{^H} 8:35 Ctrl-H bs
{^I} 9:23 Ctrl-I ht hor tab
{^J} 10:36 Ctrl-J lf
{^K} 11:37 Ctrl-K vt
{^L} 12:38 Ctrl-L ff
{^M} 13:50 Ctrl-M cr
{^N} 14:49 Ctrl-N so
{^O} 15:24 Ctrl-O si
{^P} 16:25 Ctrl-P dle
{^Q} 17:16 Ctrl-Q dc1 xon
{^R} 18:19 Ctrl-R dc2
{^S} 19:31 Ctrl-S dc3
{^T} 20:20 Ctrl-T dc4 xoff
{^U} 21:22 Ctrl-U nak
{^V} 22:47 Ctrl-V syn
{^W} 23:17 Ctrl-W etb
{^X} 24:45 Ctrl-X can
{^Y} 25:21 Ctrl-Y em
{^Z} 26:44 Ctrl-Z sub/eof

{^F1} 0:94 Ctrl-F1
{^F2} 0:95 Ctrl-F2
{^F3} 0:96 Ctrl-F3
{^F4} 0:97 Ctrl-F4
{^F5} 0:98 Ctrl-F5
{^F6} 0:99 Ctrl-F6
{^F7} 0:100 Ctrl-F7
{^F8} 0:101 Ctrl-F8
{^F9} 0:102 Ctrl-F9
{^F10} 0:103 Ctrl-F10
{^F11} 0:137 Ctrl-F11
{^F12} 0:138 Ctrl-F12

